

 two input variables: one output variable:

- current value of inertia factor: ωt - inertia factor: ω

- normalized dev. of fitness values: Δtnorm

- for each task v i, i=1,2,…,|V| in the sequence mapped in that particle, the fol-
lowing information is recorded:

 - velocity v i and its personal best position y i;

 - position (priority) x i;

 - task number, its processing time and the processor to which it is assigned.

Test problem: a test instance consisting in 7 processors and 45 tasks, with

60 task-precedence constraints, and a cycle time CT = 94 time units.

 The corresponding precedence graph was transformed to a binary prece-

dence matrix M= (mi,j)45x45 to describe the task-precedence constraints:

Figure 3: Example of an optimization result of task allocation

►The computational experiments on all data sets showed good performance

of the proposed algorithm.

►The algorithm is easy to design and implement and is tractable for practical

problems with a large number of tasks and outsourcing providers.

►The research is still in progress and we will further investigate the relation-
ship between the structure of the acyclic directed graphs and the overall per-
formance of the algorithm.

Objectives:

 Minimize Obj_1:

Minimize the overall cost: the total communication cost between tasks
and the total execution cost of performing all tasks.

 Minimize Obj_2:

Maximize the system stability, i.e. minimize the amount of processors idle
times:

CT = cycle time, i. e. the maximum time available at each processor

Note: minimizing the amount of processors idle times actually leads to an-

other objective pursued , namely maximize the processor utilization factor:

Constraints:

1) Every task i is assigned to one and only one processor:

2) The precedence constraints:

3) Constraints imposed on decision variables:

► PSO model: swarm of interacting particles - candidate solutions.

► A particle: “flies” in multiple directions guided by the following factors:

 its own experience: the local best position ; pbest

 the experience of neighboring particles: the global best position; gbest

► Updates of particles: are achieved according to :

i=1,…, PS

PS = dimension of the swarm i.e. population size

vi
t
 is the velocity of particle i at iteration t

xi
t
 is the current position of particle i at iteration t

c1 and c2 are two positive values named acceleration coefficients

φ1
t
 and φ2

t are uniformly distributed random number in [0,1]

ω is the inertia factor

initialization:

gmax ; PS ; vmax ; c1 , c2 and ω

for i=1 to PS

randomly initialize xi within the search range [xi
min ,xi

max]; initialize vi = 0;

repeat

while (convergence cr iter ion is not satisfied)

 for i=1 to PS

 calculate fitness f(xi);

 update individual best position of each particle:

 if (f(xi
t+1) ≥ f(pbesti

t) then pbest i
t+1 =pbesti

t

 else pbest i
t+1 =xi

t+1

 endif

 update global best position: gbest = argmin{f(pbesti
t) }

 update velocity of the particle; update position of the particle

 repeat

repeat

1
||

1

M

k

ikd

)xgbest(c)xpbest(cvv t

i

ttt

i

t

i

tt

i

t

i

2211

1

11 t

i

t

i

t

i vxx

► Task allocation in Cyber-Physical Systems: from cyber perspective,

real-time system research focuses on parallel application scheduling, where

tasks must be scheduled in real-time, to obtain high performance in this

heterogeneous computing environment. This is an optimization problem

within a major research field in computer science and engineering.

► Demands for scheduling parallel applications: compar ing to the tradi-

tional scheduling algorithm, where only one processor can execute a task at a

time, parallel programming models are better suited to cope with new com-

plex and challenging real-life environments.

► Task allocation problem: a specific machine-scheduling problem that

characterizes real industrial frameworks with more complex functional

demands: precedence-constrained tasks, individual processing times of opera-

tions on different machines and communication cost between tasks that are

not assigned to the same machine. The specificity of this problem generates an

increased complexity and needs higher computational effort compared to a

classical task-scheduling problem.

► Major concerns: complex real-time applications on embedded systems

need to process large amounts of data and become more computational with

the evolution of technology; but real-time computing process of massive data

requires sufficient resources for computation and communication. Therefore,

many of today’s CPS models rely on multiple power-efficient multiprocessor

platforms as a key element in performing calculations in CPS components.

This raises challenges in organizing computations upon multiprocessors.

► Proposed model: the problem is modeled as a Mixed Integer -Linear

Programming (MILP) formulation and is solved using a Particle Swarm

Optimization approach - a heuristic population-based global optimization

method that performs well in difficult multi-objective optimization problems

arising in computer science and engineering.

 Generally, a parallel application running in a heterogeneous computing
environment can be described by a directed acyclic graph G=(V,E) where

nodes vi∈V represent the set of application tasks, which will be executed on

m heterogeneous processors, m∈M, connected in a fully connected topology.

 E is a set of edges, where each edge e = (vi, vj) ∈ E represents a precedence
constraint between nodes. A node is available to be executed when all its pre-
decessors have been executed: task vj may not be started until task vi has fin-
ished.

 All tasks must be performed, but because of heterogeneous processors,
tasks running times (or execution costs) are dependent of the processor at
which they are executed.

 The execution time of task vi if it is assigned to processor k is denoted as

tki. Each edge e = (vi, vj) ∈ E has a weight cij that represent the cost of commu-
nication for transferring data between task vi (scheduled on processor k) and
task vj (scheduled on processor q).

 One assume insignificant intraprocessor communication costs, so that if
both tasks reside on the same processor, the cost of communication will be
zero. In addition, cii=0 and cij =cji.

 PD(i) is the set of direct predecessors of task vi.

Decision variables:

Constanta Maritime University, Faculty of Navigation and Naval Transport

A particle swarm-based procedure for task allocation in Cyber-Physical Systems

 Constanta, August, 2022 Simona DINU Gabriel RAICU ATOM –N 2022 Conference

Introduction

Problem formulation

Goals & Approaches

Problem solution

Conclusions and future work

Inertia factor adjustment—fuzzy controller

Encoding scheme

Simulation results

|V|

i

|M|

k

kiik

|V|

i

|V|

ij

ij

|M|

k

ikij td)dd(cmin
1 1

1

1 1 1

1

||

1

||

1

min
V

i

ik

M

k

ikT dtC

||

1

||

1||

1
max

V

i

M

k

kiik

T

td
CM

)(,
||

1

||

1

jPDidkdk
M

k

jk

M

k

ik

