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This paper proposes a solution for classification of electronics laboratory equipment with

emphasis on the electronic laboratory tools / equipment. It uses transfer-learning applied to

the pretrained Inception-V3 network model. A study regarding the impact of small retrain

dataset is conducted to see its impact in transfer-learning over Inception-V3 network model.

ABSTRACT

INTRODUCTION

RESULTS

We have TL-trained the inception-V3 network using Tensorflow’s[11] retrain script, with 

about 700 images split in 4 classes: 

• Benchtop digital multimeter (BENCHDMM): 199 images

• Benchtop power supply (BENCHPSU): 187 images

• Handheld digital multimeter (DMM): 219 images

• Benchtop oscilloscope (OSCILLOSCOPE): 95 images

Another 10% images out of each category were kept separately for test (for a total of 78

images) and tested at the end of each training. A python script looped over the test images,

and hit and misses were counted. We have downloaded and manually cured all images. Then,

we have used Geeqie[12] linux tool to cleanup possible duplicates.

CONCLUSIONS
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Transfer learning is a technique where an pretrained network is repurposed by retraining only

a small part of its layers (therefore retraining is fast) with a different, smaller set of samples.

The advantages would be the speed of retraining and the smaller set of data needed for

retraining: the latter of utmost importance, as dataset is most times insufficient. It is

commonly used in deep learning applications, when a new task needs to be served by an old

pre-trained network. In a sentence, the “knowledge” (most layers’ weights, except the few

last) is transferred from a source domain, to a target domain.

Transfer learning has been used before on Inception-V3 for various purposes, including:

pulmonary image classification[4], Terry’s nail detection [5], traffic sign recognition [6],

breast cancer image classification[7], civil engineering [8], animal classification[9] or flower

classification [10] with very good results, in the range of 90+ % accuracy.
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Table 1. Impact of dataset size when doing transfer learning on 4 

classes, on training / validation accuracy. 

Figure 2. Some of the images from the DMM dataset

• We have created an annotated image dataset of 700 images split across four categories of

electronic equipment.

• We have performed transfer learning using an Inception v3 architecture model, and

retrained it on the aforementioned dataset.

• We have achieved 88.5 % … 92.3 % top accuracy results, in line with the reported

accuracies reported in other Inception-V3 transfer-learning papers

• Training progressively with less and less data (down to 25 images per category), had

marginal effect on accuracy. For 4 classes, 25 images per class will suffice for 88+ percent

accuracy.

Figure 1. A visual explanation of the transfer learning process, by MathWorks[1]

RESULTS 

APPROACH

We have TL-trained the TensorFlow inception-v3 model, with the 700+ images, receiving a

train accuracy of 97% and final test accuracy of 90.9%. Independently, we have tested other

hand-picked images and we observed 69 hits and 9 misses (that is, about 85% hit-rate, which

almost matches the final test accuracy value)

All the code, dataset and models can be found at URL [3].

BENCHDMM 

(images)

BENCHPSU 

(images)

DMM

(imgs)

OSCILLOSCOPE 

(images)

Train 

accuracy 

(%)

Validation 

accuracy 

(%)

Final test 

accuracy 

(%)

199 187 219 95 97 92 90.3

100 98 108 50 100 98 91.9

50 49 54 25 100 85 88.9

40 39 43 20 100 100 92.3

32 31 35 20 100 100 92.3

25 25 25 25 100 100 90.9

http://www.geeqie.org/
mailto:calin.bira@upb.ro
mailto:valentin.voiculescu@upb.ro

