

CONTENT

 INTRODUCTION

 AN ENCIPHERING MODEL ACCORDING TO SHANNON’S THEORY

 C++ ALGORITHMS FOR THE IMPLEMENTATION OF THE PRESENTED

ENCIPHERING MODEL

 EXPANDING ON THE CONCEPT OF QUALITY BASED ON THE

SECRECY THEORY MODEL

 CONCLUSIONS

AN ENCIPHERING MODEL ACCORDING TO SHANNON’S THEORY

Based on the weighted addition secrecy method presented, corresponding to formula

(1) above, one can generate a certain specific encryption method, in the way it is

presented in the following model.

Let us set the number of enciphering operations to k = 1100. Let us set the number of

encoding transformations to 10, encoding transformations which can be randomly

ordered: 𝑇1,𝑇2,… ,𝑇𝑛 with n=10. For both, clarity and simplicity reasons, let us consider

that each transformation obeys the rule: 𝑇𝑖 = 𝛼𝑖𝐼𝑖 + 𝛽𝑖, with 𝛼𝑖 and 𝛽𝑖 integers and 𝐼𝑖

the inputs of the enciphering transformations. Obviously, one can choose randomly

generated pairs (𝛼𝑖, 𝛽𝑖).

Let us also set the probability related to the occurrence of each of the ten above

transformations:

𝑝1 =
1

55
, 𝑝2 =

2

55
 ,…, 𝑝𝑖 =

𝑖

55
, for 𝑖 = 1, 𝑛̅̅ ̅̅̅. (6)

The number of occurrences for each transformation is then given by the formula: 𝑇𝑖 =
𝑝𝑖𝑘. One can then randomly order the n above transformations by randomly assigning

the indices for each of the ten transformations.

Then the following triangle matrix can be generated for the transformations randomly

chosen as above, so that their probability obeys the rule in formula (6):

𝑇1 𝑇2 … … … … … … . . 𝑇𝑛
 𝑇2 … … … … … … . . 𝑇𝑛

 𝑇3 … … … … … . . 𝑇𝑛 (7)
 … … . . 𝑇𝑛

In this way, by going through each line of the above matrix 20 times, it is ensured that

the probability for each transformation is according to formula (6). According to a key

which is a natural number chosen between 1 and 1100 and the previously generated

matrix (7), the corresponding transformation it is chosen by going through the

elements of this matrix, until the corresponding transformation is reached.

One can either find the index i of the transformation to be performed on the output by

using the interval to which the key number belongs to, or the position in the matrix

can be determined and then the exact position in the corresponding line is also found.

For example, in this model presented, for a key number between 1 and 200, the

corresponding transformation has the index i, with 𝑖 = [
𝐾𝐸𝑌

20
] + 1, where [x] I stands

for the integer part of the number x. Further on, if KEY belongs to interval (201, 380],

then the index i of the respective transformation to be performed on the input is 𝑖 =

[
𝐾𝐸𝑌

20
] + 8, a.s.o.

The transmitted information can be decoded at the other end of the transmission

channel, using the reverse transformation, namely:

𝐼𝑖 =
𝑇𝑖−𝛽𝑖

𝛼𝑖
 (8)

One can use either the same key number to encode an entire certain message or a

vector of key numbers can be used to encode each symbol transmitted, using a

different key, as it will be presented further on. Next section comprises in a few

examples, by means of C++ algorithms the theory presented so far. These C++

subroutines address and implement different approaches related to the theory example

presented in section 2 of this paper.

C++ ALGORITHMS FOR THE IMPLEMENTATION OF THE

PRESENTED ENCIPHERING MODEL

The next subroutine actually solves the problem of choosing the key number in

certain intervals, by calculating the exact position of the transformation using the

mathematical concept of integer part of a real number x, [x], as already presented

in the section above. It also uses the extended model with a vector of key

numbers instead of using just only one single key used for encryption.

#include <iostream>// encryption for NR in [0, 1099]

using namespace std;

int i[26];

int j;

int pos[26];

int p, q;

int alpha[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int beta[10] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

int NR[26] = {21, 22, 25, 27, 47, 223, 227, 235, 247, 255, 256,

257, 381, 389, 391, 399, 417, 418, 419, 541, 543, 545, 547, 549, 550, 1077 };

//Set of encryption keys

int I[26] = {1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26};// Input to be encrypted

int T[26];

int O[26];// Encrypted output

int main(void) {

for (j=0; j<26; j++)

{

 pos[j] = int(NR[j]/20)+1;

 if (pos[j]<=10) {i[j] = pos[j];}

 else if ((10<pos[j]) && (pos[j]<=19)) {i[j] = (pos[j] - 10) + 1;}//{i =

((int(NR/20)+1)-10)+1;}

 else if ((19<pos[j]) && (pos[j]<=27)) {i[j] = (pos[j] - 19) + 2;}

 else if ((27<pos[j]) && (pos[j]<=34)) {i[j] = (pos[j] - 27) + 3;}

 else if ((34<pos[j]) && (pos[j]<=40)) {i[j] = (pos[j] - 34) + 4;}

 else if ((40<pos[j]) && (pos[j]<=45)) {i[j] = (pos[j] - 40) + 5;}

 else if ((45<pos[j]) && (pos[j]<=49)) {i[j] = (pos[j] - 45) + 6;}

 else if ((49<pos[j]) && (pos[j]<=52)) {i[j] = (pos[j] - 49) + 7;}

 else if ((52<pos[j]) && (pos[j]<=54)) {i[j] = (pos[j] - 52) + 8;}

 else if ((54<pos[j]) && (pos[j]<=55)) {i[j] = (pos[j] - 54) + 9;}

}

for (j=0; j<26; j++)

{

 cout << "nth i is :" << " "<< i[j] << endl;

}

for (j=0; j<26; j++)

{

 O[j] = alpha[i[j-1]]*I[j] + beta[i[j-1]];

 cout << "The nth output O is :" << O[j] << endl;

}

return 0;

}

CONCLUSIONS

This paper shows that in order to estimate future quality score for a certain

product, one does not necessarily need to measure the score of each quality

feature at each step. It is only necessary, based on previous evolutions, to

approximately determine the coefficients of a given set of possible quality

transformations most likely to occur in the future. This can also be viewed as a

quality prediction system which could be used for all sorts of complex products,

having multiple quality features.

Out of simplicity and clarity reasons, the models presented in this paper are

based on and use a determined set of T transformations. This presented model,

however, can be extended using high performance computer technology, for very

large sets of transformations, each next transformation deriving out of the

previous one, according to certain laws and functions.

Expanding on the Concept of Quality

Catalin Silviu Nutu 1), Tiberiu Axinte 2)

1) Constanta Maritime University, Constanta, Romania

2) Research and Innovation Center for Navy, Constanta, Romania

“The control of shape is one thing,

but the way to victory cannot be only a single one”
Sun Bin

