
A fast implementation of Schmitt Trigger in MATLAB
and GNU Octave

Vasile Daria-Andreea, Petrița Teodor
Faculty of Electronics, Telecommunication and Information Technology, Timișoara, România

METHODS

INTRODUCTION

RESULTS

CONCLUSIONS

REFERENCES

OMN200-72

The scientific activity of analysis, modeling and

simulation involves large volume of computation

and data processed using software routines. This

is true for signal processing also; as the size of

the signal increases, the more difficult is to

process it.

The software version for Schmitt Trigger has no

implementation in MATLAB’s Communications

Toolbox and it has an implementation in GNU

Octave in signal package that implements a multi

signal Schmitt trigger with levels with inconstant

results in our trials. The only implementation in

MATLAB is in the one of Simscape™ Library,

which is a part of the Simulink® environment. The

solution to oscillation or multiple clocking

problems is to use a Schmitt trigger type device to

translate the slow or noisy edges into something

faster that will meet the input rise and fall

specifications of the following device. An ideal

Schmitt trigger input does not rise and fall time

limitations.

There is implemented a compiled function, which

solves the problem of the implementation and the

processing speed.

Opposed to ordinary comparator, which is the

equivalent of the comparator operator in software

(e. g. x>threshold or x<threshold, depending on

the implementation)

The switching of the output at different thresholds

depending on the past state is called hysteresis.

Our implementation takes into consideration not the

two thresholds, but their average and their

difference, called hysteresis gap. The middle

threshold is at the half distance of the hysteresis

gap between the upper and the lower threshold. In

our take, the thresholds are:

low_threshold=middle_treshold-hysteresis_gap/2

high_threshold=middle_treshold+hysteresis_gap/2

With the defined, the function call is the same for

MATLAB and GNU Octave:

output_signal_vector=trigger_smith,input_signal_ve

ctor, middle_treshold,hysteresis_gap;

For e.g trigger_smith(input_signal_vector, 0, 1)

will set the thresholds to −0.5 to +0.5. The iterative

loop excludes input values tests since to be as fast

as possible. The output values can be either 0 or

1, and the initial value is set to 0 by default.

To assess the suitability of the both suites we searched

for fast compilation and execution of the code and also

check the compatibility of the programming languages.

The method is called a MEX-files and allows to use the

software in C/C++ proper withinside the MATLAB user

interface using classes and methos by mex libraries.

GNU Octave can dynamically load and execute

functions written in C/C++ using oct libraries. MEX –

files and OCT-files are pieces of C/C++ code that have

been compiled with the MATLAB/ GNU Octave API

into a dynamically loadable object. For MATLAB suite

the function is compiled with the command mex -setup

C++ and after mex trigger_smith.cpp commands. For

GNU Octave the function is complied with mkoctfile

trigger_smith.cpp. The both command create new files

with the extension .mex for MATLAB, respectively .oct

for GNU Octave file that contain the code recognized

by the both suites for calling them.

Since there is a Schmitt trigger function in GNU

Octave package, we tested our function against

the existing one and compare the results. We

tested a normal random signal of unitary rms

value, generated with randn function against the

two triggers. For an average of 40 times the speed

increases as it can be observed below.

• decrease significantly the signal processing

time and brings improvements, being a fast

tool for making calculations in which the

waiting time is considerably reduced

• application that it can be used is to measure

the frequency of a signal, or to count the

pulses of a signal

• develop some fast scripts for projects like

Microwave Doppler Radar for the frequency

counter and foot press detector for an ankle

torque measurement device

• solved in an efficiently the missing function,

documenting at the same time the steps

needed to implement other useful functions

Our function was tested on various computer

configurations, reference machine: Processor: Intel(R)

Core (TM) M5Y71 CPU @ 1.20GHz 1.40 GHz

Memory: 4,00 GB, with a 10^9 samples signal (no of

iterations), we obtained a 5x average speed increment

in MATLAB and a 2000x speed increment in GNU

Octave. The results are showed speeds in both suites

for our implementation in the figures below.

Figure 2: left: loop time for various number of iterations, GNU Octave vs C++ ;
right: Speed up Factor C++ vs GNU Octave script

Figure 3: left: Loop time for various number of iterations, MATLAB vs C++; 
right: Speed up Factor C++ vs MATLAB script:

Figure 4. Performance between schtrig() and trigger_smith() 
functions from speed point of view

. 

The compiled vectored
functions in both suites are
exhibiting a superior speed
than the own language
iterative implementation.
Since not every function can
be implemented in vectored
mode, an iterative loop may
not be a proper solution for
large signals (or other
vector/matrix processing)
due to long times involved.
The results are consistent
and improve the speed until
100x times.Figure 1: Performance of for loops

algorithm MATLAB equivalent
vs. for loops in C++ function

1. „The Math Works, Inc. MATLAB. Version 2020a, The Math Works, Inc.,
2020. Computer Software.” https://ch.mathworks.com/ (access date: 12
June 2022).
2. J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, „GNU Octave
version 5.2.0 manual: a high-level interactive language for numerical
computations.”, 2019. https://www.gnu.org/software/octave/index (access
date: 14 May 2022).
3. „C++ vs Octave | What are the differences?”
https://stackshare.io/stackups/cplusplus-vs-octave (access date: 19 May
2022)
4. Andrews, T., 2012. Computation Time Comparison Between MARLAB
and C++ Using Launch Windows. Digital commons.calpoly.edu. Available
at:<http://digitalcommons.calpoly.edu/cgi/viewcontent.
cgi?article=1080&context=aerosp> (access date 25 May 2022)
5. “Create a C++ MEX Source File - MATLAB & Simulink - MathWorks
Switzerland”. https://ch.mathworks.com/help/matlab/matlab_external/c-
mex-source-file.html (access date: 23 May 2022).
6. GNU Octave: Getting Started with Oct-Files”.
https://octave.org/doc/v4.2.0/Getting-Started-withOct_002dFiles.html
(access date: 18 May 2022).

International Conference "Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies“, August 2022


	Slide Number 1

