
1. INTRODUCTION 

Accurate analytical solution of contact problems is limited to a small number of specific 
situations. As a result, in most situations, solving these problems by numerical methods 
is preferred. In order to simplify the problem, only the case of normal pressure (tensile) 
loading on the contact area will be further considered in this work. In this case, the con-
tact area configuration and dimensions, the pressure distribution over this area and the 
normal approach of the contact bodies, result from numerically solving the equilibrium 
equation and the integral deformation conditions, while imposing satisfaction of the 
loading conditions outside the contact area and the regularity conditions towards infinity. 

Over time, several numerical procedures have been proposed to solve elastic contact 
problems. These can be grouped as follows: 

- direct integration or matrix inversion methods; 
- finite difference methods; 
- finite element methods; 
- boundary element methods; 
- point matching method; 
- partial methods; 
- fast numerical methods. 

A comparison between different numerical methods was carried out by Gatina, [5], and 
by Johnson, [2]. In order to establish the merits of the various numerical methods, Gatina 
solved the classical problem in the case of three punch shapes, (paraboloidal, quasi-
paraboloidal and circular conical), pressed against an elastic half-space.  He used a direct 
integration method with a functional regularization, Kalker's method [7, 8], four finite 
difference methods and two finite element methods, (Laplace and Hermite). Of interest is 
the paraboloidal punch which yields the Hertz solution for pressure distribution and de-
formations. 

The best results for maximum pressure were obtained by Kalker's method, (0.19% error), 
next is the RF method, (2.67% error for 9 cells and 1.94% for 33 cells).  The finite element 
method led to the highest errors, 5% to 10%, while the finite difference method occupies 
an intermediate position, with errors between 0.57% and 5.5%. The best prediction of 
the normal approach, were obtained using the RF method and the Kalker method, both 
yielding the same error of 0.4%; at the opposite pole is the finite element method (error 
between 2.8% and 6.9%). 

The best estimate of the contact area size is given by the RF method (error 2.2% for 9 
cells and 0.7% for 33 cells), while the coarsest is given by the finite difference method, 
(errors of 4.82% to 12.15%). The second and third positions are occupied, in order, by the 
finite element method and Kalker's method, with errors of 2.73% and 3.77% respectively. 

The shortest calculation time, 1284 seconds, is achieved by the RF method, 9 cells, while 
the longest, 33415 seconds, is achieved by the same method, but for 33 cells.  The Kalker 
method requires between 1450 and 5800 seconds, the finite element method needs 
3745 and 4045 seconds, while the best of the finite difference methods records 8382 to 
16500 seconds. 

A comparison of the results obtained in [5] for the other types of punches shows large 
differences between the shapes of pressure distributions, especially in the case of the 
conical punch, which shows surface singularities. 

Johnson, [2], defined problems of concentrated contact, when the contact area is small 
compared to the extent of the bodies, and extended contact, where the contact stress 
field is an appreciable part of the overall stress field of the bodies. In the first case, the 
finite element method should be avoided, being suitable only for the second category of 
problems. In such circumstances, the boundary element method should also be consid-
ered. 

In the present work, in order to highlight the dependence between micro-contact param-
eters and mechanical properties of contact materials, numerical modeling of the contact 
problem using the Conjugate Gradient and Fast Fourier Transform (CG+FFT) technique is 
proposed in [4]. Its validation on micro-contacts is performed by comparing the obtained 
results with the classical Hertz model. 

2. THEORETICAL MODELING  

It is well known that solving elastic contact problems analytically is limited to a small 
number of specific contact types. For this reason, a numerical approach is often em-
ployed for solving contact problems. The use of conventional numerical solution methods 
is limited by the large computational volume, due to the use of fine meshing of the as-
sumed contact area, which yields a large number of nodes, all calculations being done in 
all those points. 

In order to reduce computation times, various fast numerical techniques were developed 
over time, such as Multi Level Multi Summation (MLMS) and Fast Fourier Transform 
(FFT), [3, 9]. The two methods were used by Polonsky and Keer, [6], on a concentrated 
contact problem. The authors conclude that, in order to obtain accuracies comparable to 
that of the MLMS algorithm, in the case of applying the FFT algorithm it is necessary to 
extend the domain, with a negative effect on the required computational effort. The FFT 
technique applied to non-periodic problems introduces a periodicity error. Crețu, [8], de-
veloped a fast algorithm for the purpose of solving the real contact domain and pressure 
distribution for non-Hertz concentrated contacts. 

The associated mathematical model is defined by: 

1. The geometrical equation of elastic contact; 
2. The integral equation of the elastic contact; 
3. The equilibrium equation; 
4. Conditions of smoothing and non-penetration. 

 In defining the mathematical model the following notations were used:  
 Q – normal load; 
  – normal pressure distribution; 
  – local contact geometry (initial distance between the sur-

faces in contact, in  
the absence of load);   

  –real contact area;  

  s – contact rigidity;  
 – displacement along z axis;   
 normal approach between contact bodies;  
 – distance between surfaces after deformation.  

The contact problem is solved numerically on a uniform rectangular grid of  di-
mension, included in the contact plane. A Cartesian coordinate system is introduced with 
the origin at the centre of symmetry of the grid, the x and y axes parallel to the sides of 
the grid, and the z axis normal to the tangent plane common to the surfaces in contact. 
The initial dimensions of the equivalent contact surface, the corresponding displace-
ments in the Oz direction and the contact pressures, calculated at the nodes (i,j), are de-

noted by ,  and , and the grid cell sizes by a and b. 

As described in [2], the equations shown below, represent the discrete formulation of the 
elastic contact problem: 

 

 

 

 

 
In equation (2),  are the influence coefficients that represent the displace-

ment of the ( ) node along z axis, due to unit pressure acting on element ( ). 

Solving the problem of elastic contact by the Conjugate Gradient and Fast Fourier Trans-
form method involves completion of several steps, as described further: 

 Specifying the initial data of the elastic contact problem: the type of contact surfac-
es, the estimated contact area, the mesh dimensions along two perpendicular axial 
directions, the geometric elements of the contact surfaces, the elastic constants of 
the component materials, the normal force;  

 Specifying a validation solution: in order to validate the algorithm and the related 
computer code, the elements of the elastic contact determined by various ap-
proaches (analytical, numerical or experimental) from the literature are stored; 

 Discretization of the estimated contact area: a uniform rectangular network is gen-
erated, with M columns and N lines, included in the contact plane; 

 Initial contact geometry: the elevations of the surfaces are calculated at the points 
that represent the centers of gravity of the discretization cells; the nominal geome-
try of the bodies in contact is taken into account; 

 Calculation of influence coefficients. 

The proposed mathematical model was applied to some classical problems of elastic 
contact, exemplifying below the elastic micro-contact between a paraboloidal punch and 
a flat elastic half-space. 

Paraboloid – elastic half-space contact 

The theoretical determination of the elements of an elastic ellipsoid – half-space contact 
was done using the method of influence coefficients, [3]. The estimated contact domain, 
which includes the actual contact area of unspecified shape and size, is a rectangular 
shaped domain discretized into a number of elementary areas called cells. On each cell 
the pressure is considered uniformly distributed. The contact stress is a purely normal 
load. The attached coordinate system originates from the domain’s center of symmetry. 

A variable-step discretization model is proposed, in which the axial dimensions of the 
cells are in decreasing arithmetic progression towards the area with large pressure gradi-
ents. The variable-step discretization is automatically generated after increasing the ini-
tial contact cell dimensions by multiplication factors.   

Based on the discretization performed, a number of identifiers are associated to each cell 
such as: number, dimensions (length, width), vertex and center coordinates relative to 
the attached coordinate system. 

Under the assumption of a uniformly distributed pressure on each elementary area of 
the estimated contact domain and based on the principle of superposition of effects, the 
numerical model was used with the equilibrium equation included in the system, a model 
defined by: 

 
where:  are the coefficients of influence, signifying the displacement along normal 
direction of the cell centre (i) due to a unit pressure acting on cell (j); 

  represent the dimensions of cell (j); 

  is a set of indices highlighting the elementary component domains of the ac-
tual contact area; 

  is the pressure on cell j; 
 M and N are the number of cells in axial directions (odd numbers). 
 

3. RESULTS 

In order to verify the proposed model, two simulations were conducted. For the first 
case, main contact parameters were determined both numerically and analytically for the 
contact between a spherical punch and an elastic half-space. The second considered case 
was that of a parabolic surface pressed against the same flat, elastic half-space. The con-
sidered parameters and results for the two situations are further presented. 

Spherical punch - flat elastic half-space micro-contact 

For the first presented case, an elastic micro-contact was considered between a rigid 

(E1=∞) spherical punch ( ), normally pressed against a synthetic glass flat 
surface, considered as a half-space with a Young’s Modulus of EPlexiglass=2380 MPa, and a 
Poisson’s ratio of νPlexiglass=0.35. The applied force was considered to be Q=200N. The po-
tential contact domain was divided into 16384 square cells, leading to a 128×128 grid. 
For the described contact, both the proposed numerical model and the analytical Hertz 
model were applied, and the following contact parameters were determined: contact ar-
ea, contact area radius, normal approach between the contact bodies (normal displace-
ment) and maximum contact pressure. 

Figure 1 graphically illustrates the 3D pressure distribution over the contact area, ob-
tained using the proposed numerical model (Figure 1 a) and by use of the analytical mod-
el (Figure 1 b) 

a)     b)  
Figure 1 Pressure distribution over contact area: a) Numerical model, b) Analytical model (Hertz) 

Figure 2 shows, on the same plot, the pressure distribution along the contact area radius, 
obtained analytically and numerically.  

 
Figure 2 Pressure distribution along the contact area radius, 128×128 grid 

The numerical values of significant contact parameters are presented in Table 1. 

Table 1. Contact parameters obtained numerically and analytically for sphere – half-space contact 

 
 
Parabolic roller – flat elastic half-space micro-contact 

The Hertz elastic micro-contact between a rigid punch , in the shape of a barrel 
roller with curvature radii  and , pressed normally on a 
Plexiglas half-space with the following constants was considered: , 

. The pressing force is . The potential contact field has been di-
vided into 529 square cells (23x23).  

The curvature radii, principal curvatures at the initial point of contact and elastic parame-
ters of the materials are given by equations (7): 

 

Using the proposed mathematical model, the following elements were determined nu-
merically and analytically: 

 contact area; 
 contact ellipse half-axes; 
 normal approach between contact bodies; 
 maximum contact pressure. 

Figures 3-6 illustrate graphical representations for the geometry of the bodies in contact, 
the pressure distribution (analytically and numerically obtained) and the axial contact 
pressure distributions. 

The numerical values of significant contact parameters are presented in Table 2. 

Table 2. Contact parameters obtained numerically and analytically for parabolloid – half-space contact 

 
 

 

Figure 3. Geometry of boundary surfaces of the contact bodies (barrel roller – flat surface), (23x23) 

 

Figure 4. Spatial distribution of contact pressure in a barrel roller – plane contact: 
 a) numerical model, (23x23); b) analytic model (23x23)

 

Figure 5. Axial contact pressure distributions, roller - plane contact, (23x23) 
a) - along the x-axis, b) - along the y-axis, 

In the case of the roll-elastic half-space contact, a very fine discretization was not 
achieved, as in the case of the circular contact above.  However, the graphs and numeri-
cal values show that the proposed mathematical model agrees very well with the results 
obtained with the Hertz theory. 

4. CONCLUSIONS 

In order to highlight the dependence between micro-contact parameters and the me-
chanical properties of the materials in contact, the present paper proposed a numerical 
modeling of micro-contacts using the Conjugate Gradient and Fast Fourier Transform 
technique (CG + FFT) and its adaptation to the micro-contact range. Model validation was 
performed by comparing the obtained results with the classical Hertz model, for two con-
tact body shapes. 

The proposed mathematical models used as parameters of the micro-contact, the con-
tact area dimensions, the normal displacement of the contact bodies and the maximum 
contact pressure.  

The elastic characteristics of the tested material were materialized by the longitudinal 
modulus of elasticity and the Poisson's ratio.  

The obtained results show very good agreement between the numerical and analytical 
results, thus validating the proposed numerical model. 
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Method Maximum pressure 
[MPa] 

Normal approach 
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Large half-axis (a) 
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Small half-axis (b) 
[mm] 

Analitic 146.04 0.06252 2.054 1.488 0.439 

Numeric 146.08 0.06248 2.10 1.488 0.418 
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